Initial Report from a Phase 2 Multicenter Study of Tazemetostat (EPZ6438), an Inhibitor of Enhancer of Zeste Homolog 2 (EZH2), in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma (NHL)

Franck Morschhauser, MD, Gilles Salles, MD, PhD, Pam McKay, MBCHB, FRCPath, Steven Le Guillou, MD, PhD, Hervé Tilly, MD, John A. Radford, MD, FRCPath, Guillaume Cartron, MD, PhD, Michael J. Dickinson, MBBS, FRACP, FRCPA, Christophe Frucht, MD, John G. Gibberen, MD, DSc, Anna Schmitt, MD, Peter Johnson, MA, MD, FRCPath, Stephen Opat, MD, Pier Luigi Zinzani, MD, PhD, Patricia Pimentel, Maria Roche, NP, Stephen J. Blakemore, MD, PhD, Alice McDonald, Mark Woodruff, Natalie Michele Warholic, Shelley Knight, Alicia Clawson, Harry Mao, MD, PhD, John Larus, Peter T. Ho, MD, and Vincent Ribrag, MD

1Hospital Claude Huriez-CHU Lille, Nord, France; 2Centre Hospitalier Lyon Sud, Rhone, France; 3Beatson West of Scotland Cancer Centre, Strathclyde, UK; 4CHU Nantes Loire Atlantique, France; 5Centre Henri Beauguer, Rouen, France; 6University of Manchester and the Christie NHS Trust, Manchester, UK; 7Hospital Saint Eloi, Herault, France; 8Peter MacCallum Cancer Centre, East Melbourne, Australia; 9Centre Francois Baclesse, Caen, France; 10Barts Hospital, London, UK; 11Institut Bergonie, Bordeaux, France; 12Southampton General Hospital, Southampton, UK; 13Monash Medical Centre Moorabbin, Victoria, Australia; 14Azienda Ospedaliero Universitaria Policlinico Sant’Orsola Malpighi, Bologna, Italy; 15Epizyme, Cambridge, MA; 16Institut Gustave Roussy, Val de Marne, France

Tazemetostat is a Potent and Selective Inhibitor of EZH2

• EZH2 is the catalytic subunit of the multi-protein PR2 (Polycomb Repressive Complex 2)
 • PR2 is the only protein methyltransferase complex that can methylate H3K27
 – Generates mono-, di- and tri-methylation of H3K27
 – H3K27me3 is a transcriptionally repressive histone mark, and is the only significant substrate for PR2
 • Aberrant trimethylation of H3K27 is oncogenic in a broad spectrum of human cancers, such as B-cell NHL
 • Activating mutations of EZH2 are found in B-cell NHL
 • Tazemetostat is a first-in-class, highly selective, potent EZH2 inhibitor
 – Tumor regression shown in preclinical models as monotherapy
 – Favorable clinical safety, PK and PD profiles with durable objective responses demonstrated in the first-in-human phase 1 study

Phase 2 Study Progress

• Surpassing futility hurdle in 4 of 5 cohorts: 1
 • Cohort with wild-type EZH2 has reached non-relapsed lasting remission
 1. DLBCL, with Germinal Center B-cell (GCB) subtype and EZH2 mutations
 2. DLBCL, with non-GCB subtype (including PMBCL)
 3. FL with EZH2 mutations

Future directions:

• Next generation sequencing to be performed retrospectively with a panel of 62 genes commonly mutated in NHL (incl. EZH2)

Evolution of Tumor Response and Preliminary Efficacy Assessment

Examples of Clinical Response

• Study enrollment on track with ~30% of patients enrolled
 • Approximately 20% Identified to have EZH2 mutations (DLBCL GCB and FL)
 • Tazemetostat demonstrates a favorable safety profile in all patients treated, consistent with the phase 1 experience
 • Responses have been observed in all patient cohorts
 • Study has been expanded to 270 patients
 • 60 patients in each DLBCL cohort
 • 45 patients in each FL cohort
 • Enrollment ongoing in all study cohorts with continued expansion of global sites

Conclusions

• Study enrolment on track with ~30% of patients enrolled

Acknowledgements: We thank our co-investigators and their teams and, most importantly, the patients and families who participated in the study.

www.epizyme.com