A Phase 1 Study of Tazemetostat (EPZ-6438), an Inhibitor of EZH2: Preliminary Safety and Activity in Patients with Relapsed or Refractory NHL and Advanced Solid Tumors

Vincent Ribrag, Jean-Charles Soria, Jean-Marie Michot, Anna Schmitt, Sophie Postel-Vinay, Fontanet Bijou, Jean-Michele Coindre, Maud Toulemonde, Stephen J Blakemore, Ben Suttle, Scott Ribich, Blythe Thomson, John Larus, Harry Miao, Peter TC Ho, and Antoine Italiano

Participating Institutions
Institut Gustave Roussy, Villejuif, France
Institut Bergonie, Bordeaux, France

Sponsor
Epizyme, Inc
2013 Accomplishments

Methylation of H3K27me3 by PRC2 Mediates Transcriptional Repression

- EZH2 is the catalytic subunit of the multi-protein PRC2 (Polycomb Repressive Complex 2)
- PRC2 is the only protein methyltransferase complex that can methylate H3K27
 - Generates mono-, di- and tri-methylation of H3K27
 - H3K27me3 is a transcriptionally repressive histone mark, and is the only significant substrate for PRC2
- Aberrant trimethylation of H3K27 is oncogenic in a broad spectrum of human cancers, such as B-cell NHL
- Mutations in other proteins that affect H3K27 and chromatin accessibility in general are prevalent across almost all cancer types
EZH2 Regulates B-cell Maturation and Cell Fate

EZH2 is the “gatekeeper” for cell fate decisions.
EZH2 Gain of Function Mutations Result in Elevated H3K27me3 Levels

Wild-Type EZH2

Y641 or Y646 Mutant EZH2

Heterozygous WT/Y641 or Y646 Mutant EZH2

H3K27Me3 Production

+++

+/-

++++++

Sneeringer et al, PNAS, 2010
Tazemetostat (EPZ-6438): Potent and Highly Selective EZH2 Inhibitor

Novel Structure, Potent Target Inhibition

Ki < 2.5 nM

Selective for EZH2

Selectivity > 20,000-fold (100-fold for EZH1)

Antitumor Activity in EZH2 Mutant and WT Xenograft Models of DLBCL

KARPAS-422 (EZH2 Y646N)

- Vehicle, BID x 28
- 62.5 mg/kg BID x 28
- 125 mg/kg BID x 28
- 250 mg/kg BID x 28

OCI-LY19 (EZH2 WT)

- Vehicle, BID x 20
- 125 mg/kg BID x 20
- 500 mg/kg BID x 20

Knutson et al., Mol. Cancer Therapeutics, 2014
Thomenius et al. Molecular Targets Conference, 2015
First-in-Human Phase 1 Trial
E7438-G000-001 (NCT01897571)

- Population: relapsed or refractory B-cell lymphoma or solid tumors
- Study design: 3+3 dose-escalation completed
 - Expansion cohorts (800 mg and 1600 mg BID) completed
 - Food effect sub-study (400 mg BID) completed
 - Drug-drug interaction sub-study (800 mg BID) completed
- Primary endpoint: determination of RP2D/MTD
- Secondary endpoints: safety, PK, PD and tumor response (every 8 wks)
- Data cut: 7-Nov-2015

<table>
<thead>
<tr>
<th>Dose (mg BID)</th>
<th>Patients (n=58)</th>
<th>Solid tumors (n=37)**</th>
<th>B-cell NHL (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100*</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>14</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1600</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Food Effect</td>
<td>13</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Drug-Drug</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

* 2 formulations

**Solid tumor data presented by A. Italiano, ESMO/ECC 2015

from Ribrag et al., ASH 2015
Patient Tumor Types

Relapsed or refractory NHL

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>GCB</th>
<th>Non GCB</th>
<th>Undetermined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse Large B cell Lymphoma (DLBCL)</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Follicular lymphoma (FL)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Zone lymphoma (MZL)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Relapsed or refractory solid tumors

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>INI1-deficient or negative</td>
<td>5</td>
</tr>
<tr>
<td>Epithelioid sarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>4</td>
</tr>
<tr>
<td>Other solid tumors</td>
<td>3</td>
</tr>
<tr>
<td>Other solid tumors</td>
<td>22</td>
</tr>
</tbody>
</table>

2/17 NHL patients tested to date are EZH2 mutant by cobas® test (in development, Roche Molecular Systems, Inc.)

from Ribrag et al., ASH 2015
Clinical Pharmacokinetics

- Rapid absorption ($t_{\text{max}} = 1-2$ h) with a mean terminal $t_{1/2} = 3 - 5$ h
- Dose-proportional C_{max} and AUC_{0-12h} at steady-state (day 15) through 1600 mg BID
- Decrease in systemic exposure between day 1 and day 15 with no further reduction afterwards
 - 42% decrease in AUC_{0-12h} on day 15 vs. day 1 at 800 mg BID
 - C_{trough} levels reach steady-state by day 15

from Ribrag et al., ICML 2015
Target inhibition in skin:
- Reduction of H3K27me3 by IHC at week 4 at all doses
- Exposure-dependent reductions in H3K27me3
- Differential effects by epithelial layer
 - Stratum basale - minimal change
 - Stratum spinosum – pronounced change
 - Full epidermis – composite signal of stratum spinosum and basale
- Reduction in H3K27me3 signal equivalent at 800 and 1600 mg BID

from Ribrag et al., ASH 2015
Safety Profile in All Patients
(n=55: 20 NHL and 35 Solid Tumors)

<table>
<thead>
<tr>
<th></th>
<th>All Events</th>
<th>All Treatment-Related</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades</td>
<td>Grade ≥3</td>
</tr>
<tr>
<td>Asthenia</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Nausea</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Constipation</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dry skin</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Anxiety</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Depression</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Night sweats</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Hepatocellular injury</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

* All AEs with frequency >5% regardless of attribution shown

** All grade ≥3 treatment-related events shown

Ribrag et al., ASH 2015
NHL Patient Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n=21 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years [range]</td>
<td>63 [24-84]</td>
</tr>
<tr>
<td>Sex (M / F)</td>
<td>15/6</td>
</tr>
<tr>
<td># of prior therapeutic systemic regimens</td>
<td>1 (10)</td>
</tr>
<tr>
<td></td>
<td>2 (10)</td>
</tr>
<tr>
<td></td>
<td>1 (5)</td>
</tr>
<tr>
<td></td>
<td>8 (38)</td>
</tr>
<tr>
<td></td>
<td>3 (14)</td>
</tr>
<tr>
<td></td>
<td>7 (33)</td>
</tr>
<tr>
<td>Prior autologous hematopoietic cell transplant</td>
<td>8 (38)</td>
</tr>
<tr>
<td>Prior radiotherapy</td>
<td>17 (57)</td>
</tr>
</tbody>
</table>

from Ribrag et al., ASH 2015
Objective Response in NHL
All Patients (n=21)

Food Effects (FE):
200 mg on day -8 and day -1
400 mg BID from day 1

Data as of 27-May 2015
Response in EZH2-mutated DLBCL

53 year old female (EZH2Y646H) treated at RP2D (800 mg BID)

Baseline SPD: 8282mm2
Wk 16 SPD: 3864 mm2 (PR)
Wk 40 SPD: 3506 mm2 (PR)

Images courtesy of A. Italiano, Institut Bergonie

Data as of 27-May 2016
Tazemetostat Phase 2 Dose Selection

<table>
<thead>
<tr>
<th>Dose BID</th>
<th>Efficacy</th>
<th>Safety</th>
<th>PK/PD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Response in NHL (%)</td>
<td>Grade ≥3 TEAE *</td>
<td>H3K27me3 Inhibition Emax **</td>
</tr>
<tr>
<td><800 mg</td>
<td>2/9 (22%)</td>
<td>7/24 (29%)</td>
<td>-</td>
</tr>
<tr>
<td>800 mg</td>
<td>5/8 (62%)</td>
<td>3/19 (16%)</td>
<td>81%</td>
</tr>
<tr>
<td>1600 mg</td>
<td>2/4 (50%)</td>
<td>4/12 (33%)</td>
<td>91%</td>
</tr>
</tbody>
</table>

* Treatment Emergent Adverse Events in all patients (n=55)

** H3K27me3 Emax vs. Exposure

From Ribrag et al., ASH 2015
Subunits of SWI/SNF Complexes Are Mutated Across Many Indications

Adapted from Kadoch 2015
Antagonism of PRC2 and SWI/SNF-Dependent Chromatin Remodeling Regulates Pluripotency

Stem or Progenitor Cells

Highly dependent on EZH2 activity

SWI/SNF

PRC2

INI1

SMARCA4

↓ PRC2 target genes

Stem cell programs

↓ Self-renewal and Block in differentiation

Adapted from Wilson 2010
EZH2 Activity Is Down-regulated as Progenitor Cells Become Differentiated

Stem or Progenitor Cells

- Highly dependent on EZH2 activity
- SWI/SNF
- PRC2
- INI1
- SMARCA4
- PRC2 target genes
- Stem cell programs
- Self-renewal and Block in differentiation

Differentiated Cells

- EZH2 activity down-regulated
- SWI/SNF
- PRC2
- INI1
- SMARCA4
- PRC2 target genes
- Stem cell programs
- Quiescence and Differentiation

Adapted from Wilson 2010
INI1 or SMARCA4 Loss Can Creates an Oncogenic Dependency on EZH2 in Tumors

Stem or Progenitor Cells

- Highly dependent on EZH2 activity
- SWI/SNF
- PRC2
- \(\downarrow\downarrow\downarrow\) PRC2 target genes
- \(\uparrow\uparrow\) Stem cell programs
- Oncogenic Transformation

INI1 or SMARCA4-negative tumors

- Malignant rhabdoid tumor (MRT)
- Malignant rhabdoid tumor of the ovary (MRTO/SCCOHT)
- Epithelioid Sarcoma (ES)
- Renal Medullary Carcinoma (RMC)

EZH2 knockout reverses oncogenesis induced by INI1 loss

Adapted from Wilson 2010

\[\text{Graph showing tumor-free survival vs. days}}\]
INI1- and SMARCA4-negative Rhabdoid Tumors are Aggressive in Children and Young Adults

Malignant Rhabdoid Tumors (MRT)
- Often pediatric, however adult cases reported
- Occur in the kidney, CNS and soft tissue
- Chemo-resistant
- Dismal prognosis with survival rates <25%

Malignant Rhabdoid Tumor of the Ovary (MRTO)
- Also known as Small Cell Carcinoma of the Ovary Hypercalemic Type (SCCOHT)
- Average age of diagnosis at 24 years
- Chemo-resistant
- Dismal prognosis with survival rates <35%

MRT in an Infant

MRTO in a 15-Yr Old

Image courtesy of S. Goldman, MD

Bailey et al., 2014
INI1- and SMARCA4-Negative Rhabdoid Tumor Models are Sensitive to Tazemetostat

In vitro and in vivo cell killing of mutant INI1 MRT cells

![Graph showing cell killing of mutant INI1 MRT cells](image1)

In vitro and in vivo cell killing of mutant SMARCA4 MRTO cells

![Graph showing cell killing of mutant SMARCA4 MRTO cells](image2)

Knutson et al. PNAS, 2013
Penebre et al. EORTC, 2015
EZH2 Target Inhibition in Tumor Tissue

Pre-Dose

Rhabdoid Tumor of Kidney
INI1-negative

H3K27me3
Diffuse positive 1+: 100% tumor

Epithelioid Sarcoma
INI1-negative

H3K27me3
Diffuse positive 1+: 100% tumor

Post-Dose: Week 4

H3K27me3
Negative: 100% tumor

H3K27me3
Negative: 50% tumor
Patient Tumor Types

<table>
<thead>
<tr>
<th>Relapsed or refractory solid tumor</th>
<th>N=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>INI1-negative (SMARCB1)*</td>
<td>Malignant rhabdoid tumor</td>
</tr>
<tr>
<td></td>
<td>Epithelioid sarcoma</td>
</tr>
<tr>
<td>SMARCA4-negative*</td>
<td>Malignant rhabdoid tumor of ovary (SCCOHT)</td>
</tr>
<tr>
<td></td>
<td>Thoracic sarcoma</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td></td>
</tr>
<tr>
<td>GI malignancy</td>
<td></td>
</tr>
<tr>
<td>GU malignancy</td>
<td></td>
</tr>
<tr>
<td>GYN malignancy (non-SCCOHT)</td>
<td></td>
</tr>
<tr>
<td>CNS tumor/other sarcoma</td>
<td></td>
</tr>
<tr>
<td>Relapsed or refractory NHL</td>
<td>N=21</td>
</tr>
</tbody>
</table>

* INI1- or SMARCA4-negative by IHC

from Italiano et al., ECC 2015
Best Response in Patients with Solid Tumors

* Patients censored at time of progression

** Four additional other solid tumor patients with pending disease evaluation

from Italiano et al., ECC 2015
CR in Patient with INI1-Negative Malignant Rhabdoid Tumor

55 y.o. male
800 mg BID

Diagnosis
Surgery + XRT

Week 4
June 20, 2014

Week 8: CR

Week 20

Tazemetostat: ongoing response week 65+

from Italiano et al., ECC 2015
PR in Patient with SMARCA4-Negative Malignant Rhabdoid Tumor of Ovary

Baseline

Week 8

Week 16

27 y.o. female
1600 mg BID

Tazemostat: ongoing week 24+

2013 2014 CR CR PD 2015 Week 8: PR Week 16: PR

from Italiano et al., ECC 2015
Clinical Pharmacology:
Food Effect and Drug-Drug Interaction

- The effect of food on tazemetostat pharmacokinetics
 - Patients (n=13) received tazemetostat 200 mg after an overnight fast and immediately after a high-fat breakfast in a randomized crossover fashion with 7 days between doses
 - Plasma tazemetostat concentrations were determined over 24 hours after each dose
 - Patients received tazemetostat 400 mg BID after completing the food effect component of the study

- The effect of tazemetostat on CYP3A4/5-mediated metabolism
 - Patients (n=13) received an oral dose of midazolam 2 mg on Day -1 and Day 15
 - Tazemetostat 800 mg BID administration started on Day 1 and continued throughout the study
 - Plasma midazolam concentrations were determined over 24 hours after each dose
Clinical Pharmacology: Food Effect

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fed:Fasted Ratio</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}</td>
<td>0.72</td>
<td>0.52, 1.00</td>
</tr>
<tr>
<td>(ng/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{AUC}_{(0-\infty)}$</td>
<td>0.93</td>
<td>0.66, 1.30</td>
</tr>
<tr>
<td>(ng·h/mL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $\text{AUC}_{(0-\infty)}$ and C_{max} decreased by 7% and 28%, respectively.
- The 90% CI for both ratios contained 1.

Administration of tazemetostat with a meal resulted in a non-clinically relevant effect on systemic disposition and overall systemic exposure from Suttle et al., AACR 2016.
Pharmacokinetic results after administration of midazolam with and without tazemetostat demonstrate that tazemetostat is a weak inducer of Cyp3A4/5 from Smith et al., AACR 2016

Change relative to administration of midazolam alone
Phase 1 Summary

- Tazemetostat demonstrates clinical activity as monotherapy in patients with both B-cell NHL and solid tumors
- Relapsed or refractory DLBCL (both GCB and non-GCB), FL and MZL
 - Objective responses in B-cell NHL with either wild-type or mutated EZH2
 - Responses are durable – patients ongoing at 10+ to 21+ months
- Relapsed INI1- and SMARCA4-negative tumors
 - Malignant rhabdoid tumor, malignant rhabdoid tumor of ovary (SCCOHT), epithelioid sarcoma
 - Objective responses (CR and PR) and SD ≥6 months
- Pharmacodynamic inhibition of H3K27me3 demonstrated in tumor tissue and in surrogate tissue (skin)
- Safety profile as monotherapy is favorable for both monotherapy and combination development
- Pharmacokinetic results demonstrate that tazemetostat may be taken without regard to meals and is a weak inducer of CYP3A4/5
- RP2D dose of 800 mg BID supported by safety, efficacy, PK/PD
Current Tazemetostat Development

- **Non-Hodgkin Lymphoma**
 - Phase 2 trial for DLBCL and FL – France, Australia, UK, Italy, Canada, US, Germany.
 - Five cohorts – prospectively stratified according to cell-of-origin and EZH2 mutation status
 - Phase 1/2 trial in DLBCL of tazemetostat in combination with R-CHOP in front-line elderly high-risk patients to start in 2016
 - Phase 1b trial in DLBCL of tazemetostat in combination with a checkpoint inhibitor to start in 2016

- **Rhabdoid and non-rhabdoid INI1-negative or SMARCA4-negative Tumors and Synovial Sarcoma**
 - Phase 2 trial in adults – US, Belgium, France, Italy, Australia, Canada, Germany, Taiwan
 - Phase 1 trial in children (oral suspension formulation) – US, Australia, Denmark, France, Canada, UK, Germany.

- **Mesothelioma**
 - Phase 2 trial in mesothelioma with BAP1 loss of function to start in 2016 in US, France and UK
We thank our co-investigators and their teams and, most importantly, the patients and families who participated in the study.